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ABSTRACT 
This research describes a multimodal emotion identification system that uses auditory and visual inputs to 
recognize emotions. Mel-Frequency Cepstral Coefficients, Filter Bank Energies, and prosodic characteristics are 
retrieved from the audio channel. Two techniques are being investigated for the visual element. First, the 
geometric relationships between face landmarks, such as distances and angles, are calculated. Second, we 
condense each emotional movie into a smaller collection of key-frames that may be used to visually distinguish 
between different emotions. To accomplish so, key-frame summary films are fed into a convolutional neural 
network. Finally, in a late fusion/stacking approach, the confidence outputs of all the classifiers from all the 
modalities are utilized to build a new feature space to be trained for final emotion label prediction. Experiments 
on the SAVEE, eNTERFACE'05, and RML databases reveal that our proposed solution performs significantly 
better than current options, defining the current state-of-the-art in all three databases. 
 
KEYWORDS: Multimodal Emotion Recognition, Classifier Fusion, Data Fusion, Convolutional Neural 
Networks. 

1. INTRODUCTION 
One of the most significant components in allowing robots to communicate with people is the ability to detect 
human intents and sentiments. For choosing the appropriate robot/machine/computer reaction, the identified 
emotional mood will be taken into account [1]–[4]. However, deciding on a reply based on an individual's 
emotional state necessitates the ability to recognize human emotions. Mobile computing [5], [6], robotics [7], 
health monitoring [8], [9], and gaming [10], to name a few, have all benefited from the analysis. Several 
difficulties can impair the performance of an algorithm developed utilizing computer vision techniques. For 
example, different people may express the same feeling in various ways. Furthermore, different points of view 
result in unequal representations of emotion. Furthermore, occlusions and variations in lighting may cause the 
identification technique to be deceived. If the emotion must be recognized by speech, ambient noise and 
variances in the voices of different participants are important elements that might impair the final recognition 
result. Humans utilize both aural and visual clues to correctly understand emotions. Humans utilize coverbal 
signals to underline the meaning of their speech, according to [11]. Body, finger, arm, and head movements, as 
well as face emotions like gaze and speech prosody, are examples. This is because nonverbal communication, 
which includes facial expressions, body language, and voice tone, accounts for 93 percent of human 
communication. Face detection and tracking, feature extraction, and recognition are all part of Computerized 
Facial Expression Recognition (FER) [12].  
 

The face is first recognized and tracked over a series of photos that make up a video sequence. The (spatial) 
ratio template tracker [13], the upgraded Kanade-Lucas-Tomasi tracker [14], the AdaBoost learning algorithm 
[15], the ro-bust face identification algorithm [16], and the piecewise Bezier volume deformation tracker [17], 
among others, are instances of this method. Because facial expressions are affected by head translation, scaling, 
and rotation, both motion-based and model-based representations, such as geometric normalization and 
segmentation, are examined. 
 
The next stage is to extract data from the identified face that will aid in determining the desired emotion [18]. 
Geometric and appearance traits, such as distances between two determined face landmarks or angles, are the 
two basic kinds of face characteristics. The geometric aspects of the face include the forms of certain portions 
of the face, such as the eyes, eyebrows, and mouth, as well as the placements of facial points, such as the 
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corners of the eyes and the corners of the mouth. The characteristics of the face are based on the entire face or a 
specific portion of it. Texture filters like Gabor can be used to extract them. They are concerned with the skin's 
textures, which are influenced by wrinkles, furrows, and bulges [19]. 
 
We offer an approach for recognizing emotions based on audio-visual data in this research. We use multiclass 
classification, in which each sample is assumed to reflect just one emotion. We employ Mel-Frequency Cepstral 
Coefficients (MFCCs), Filter Bank Energies (FBEs), and statistics and acoustics characteristics to analyze audio 
data [20], [21]. We use key-frames to encode the data in the movie, followed by face geometric relations and 
convolution. To learn each feature space individually, we employ state-of-the-art classifiers. In order to obtain 
the final classification prediction, the final prediction is TABLE 23: Fusion by using the RF–PCA on the 
eNTERFACE’05 database. 
 

RF-PCA Anger Disgust Fear Sadness Surprise Happiness Recognition rate (%) 
Anger 204 2 0 1 3 2 96.23 
Disgust 0 204 2 0 0 5 96.68 
Fear 0 0 197 9 4 0 93.81 
Sadness 0 0 4 204 3 0 96.68 
Surprise 2 2 4 1 197 4 93.81 
Happiness 3 3 0 0 1 199 96.60 

      Average rate (%) 95.64 
 

TABLE 24: Comparison of all the fusion results for the three databases. 
Fusion result SVM SVM-PCA RF RF-PCA 

SAVEE 98.1% 99.52% 100% 99.88% 
RML 98.47% 98.89% 99.72% 99.58% 
eNTERFACE’05 94.92% 98.33% 98.73% 95.64% 

 
TABLE 26: Comparison of all the fusion methods’ recogni-tion rates based on the eNTERFACE’05 database 

Emotion recognition system Recognition rate (%) 
Hidden Markov model [31] 56.30 
Neural networks [32] 67.00 
Unified hybrid feature space [55] 71.00 
SVM [56] 71.30 
KCFA and KCCA [26] 76.00 
Bayesian network models [33] 66.54 
Combinational method [34] 61.10 
Local Phase Quantization [57] 76.40 
Our result by SVM 94.92 
Our result by SVM with PCA 98.33 
Our result by RF 98.73 
Our result by RF with PCA 95.64 

 
- with the same kind as the first level. SAVEE, eNTERFACE'05, and RML databases were used to generate the 
experimental findings. Over all of the databases, the RF classifier performed the best. The recognition rates on 
the mentioned databases were 99:72%, 98:73% and 100%, respectively. They improved by 0:72 percent, 22:33 
percent, and 9:17 percent, respectively, as compared to earlier state-of-the-art findings on the same datasets and 
modalities. Fear was the most often mislabeled term. We intend to expand the list of key-frames in future study 
to allow the study to cover other aspects of the emotion movies in order to better distinguish between fear and 
happiness, as well as rage and disgust. Similarly, we want to use 3D convolutions and RNN-LSTM to augment 
the CNN section of the model to include extra temporal information [65]. 
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TABLE 29: The number of times the label combo-nations with the greatest misclassification rates were repeated in each 
of the three datasets. 

Label 

F + H A + D D+ F F+ SU SU+H SA+ SU F+SA 
combination (%)        

Repetition 3 2 2 2 1 1 1 
 

TABLE 30: The total number of label repeats in the combinations with the greatest misclassification rates, in each 
database. 

 Fear Happiness Anger Disgust Sadness Surprise 
SAVEE 2 1 1 2 1 1 
RML 3 2 0 1 0 2 
eNTERFACE’05 3 1 1 1 1 1 
Summation 8 4 2 4 2 4 

 
2. CONCLUSION 

We demonstrated an audio-visual emotion recognition system. Prosodic features, MFCCs, and FBEs were 
among the audio features. Estimated key-frames representing each video material in terms of representative face 
expressions were used to compute visual characteristics. Both geometric characteristics and a CNN-based model 
were used to characterize visual data. Four different classification techniques were used: multiclass SVM, RF 
with and without PCA, and RF with and without PCA. The output confidence values of the first classifier were 
fused to define a new feature vector that was learned by a second level classifier after each set was trained 
individually. 
 
The Estonian Research Grant (PUT638), the Spanish projects TIN2013-43478-P and TIN2016-74946-P, and the 
European Commission Horizon 2020 grant project SEE.4C under call H2020-ICT-2015, as well as the Estonian 
Centre of Excellence in IT (EXCITE) funded by the European Regional Development Fund and the European 
Network on Integrating Vision and Language (iV&L Net) ICT, have all contributed to this work. The authors 
are also appreciative for NVIDIA Corporation's support in the form of a Titan X Pascal GPU donation. 
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